lunes, 18 de octubre de 2010

Fermentaciòn y Respiracion Celular

La fermentación es un proceso bioquímico por el cual una sustancia se transforma mediante
la acción de microorganismos o enzimas.
  
En ausencia de oxígeno, el ácido pirúvico puede seguir vías anaeróbicas (sin presencia de O2 como aceptor). El ácido pirúvico puede convertirse en etanol (alcohol etílico) o en uno de varios ácidos orgánicos diferentes, de los cuales el ácido láctico es el más común. El producto de reacción depende del tipo de célula. Cuando los jugos azucarados de las uvas y de otras frutas se extraen y se almacenan en condiciones anaeróbicas, las levaduras transforman el jugo de fruta en vino, convirtiendo la glucosa en etanol. Cuando el azúcar se agota, las levaduras dejan de funcionar; en este momento, la concentración de alcohol es entre 12% y 17% dependiendo de la variedad de uvas y de la estación en la cual fueron cosechadas.
En el primer paso de la glucólisis se desprende dióxido de carbono. En el segundo, se oxida el NADH y se reduce el acetaldehído. La mayor parte de la energía química de la glucosa permanece en el alcohol, que es el producto final de la secuencia. Sin embargo, regenerando NAD+, estos pasos permiten que la glucólisis continúe, con su pequeño, pero en algunos casos vitalmente necesario, rendimiento de ATP, por lo que es necesario mucho mas oxidaciones de acido pirúvico
El significado científico de la fermentación, es que la energía de levitación anaeróbica del metabolismo de unos nutrientes, tales como la azúcar convierte a estos nutrientes en ácido láctico, ácido acético, y etanol. Éstos son el producto final de fermentación de algunos microorganismos:
  • Saccharomyces: alcohol etílico y dióxido de carbono
  • Estreptococo y Lactobacillus: el ácido láctico
  • Propionibacterium: ácido propionic, ácido acético, y el dióxido de carbono
  • Escherichia coli: ácido acético, ácido láctico, ácido succinic, alcohol etílico, dióxido de carbono e hidrógeno
  • Enterobacter: ácido fórmico, alcohol etílico, ácido 2,3 butanodiol y láctico, dióxido de carbono, e hidrógeno.
  • Clostridium: ácido butírico, alcohol butílico, acetona, alcohol de isopropílico, dióxido de carbono, e hidrógeno

Fermentación Alcohólica

La fermentación alcohólica es un proceso anaeróbico realizado por las levaduras y algunas clases de bacterias. Estos microorganismos transforman el azúcar en alcohol etílico y dióxido de carbono. La fermentación alcohólica, comienza después de que la glucosa entra en la celda. La glucosa se degrada en un ácido pyruvic. Este ácido pyruvic se convierte luego en CO2 y etanol. Los seres humanos han aprovechado este proceso para hacer pan, cerveza, y vino. En estos tres productos se emplea el mismo microorganismo que es: la levadura común o lo Saccharomyces cerevisae.

Fermentación de Pan

Durante el proceso de fermentación de pan, el azúcar es convertida en alcohol etílico y dióxido de carbono. El dióxido de carbono formará burbujas, que serán atrapadas por el gluten del trigo que causa que el pan se levante. Debido a la rapidez con que se fermenta el pan, se requieren apenas pocas cantidades de alcohol, cuya mayoría se evapora durante el proceso de levitación.

Fermentación de Vino

Los responsables de la fermentación alcohólica de los vinos son las Saccharomyces. El jugo de uva contiene altos niveles de azúcar en forma natural. Estos azúcares se transformar en alcohol y dióxido de carbono. La fermentación natural puede producir vino con alcohol de hasta 16 por ciento.

Fermentaciòn Lactica
El ácido láctico se forma a partir del ácido pirúvico, por acción de una variedad de microorganismos y también por algunas células animales cuando el O2 es escaso o está ausente.




Reacción enzimática que produce ácido láctico anaeróbicamente a partir de ácido pirúvico en las células musculares. es una ruta metabólica anaeróbica que ocurre en el citosol de la célula, en la cual se oxida parcialmente la glucosa para obtener energía y donde el producto de desecho es el ácido láctico.
En los musculos en excesiva actividad y con una respiración inadecuada, se produce fermentación, el NADH se oxida y el ácido pirúvico se reduce. Las moléculas de NAD+ producidas en esta reacción se reciclan en la secuencia glucolítica. Sin este reciclado, la glucólisis no puede seguir adelante. Esta acumulación de ácido láctico da como resultado dolor y fatiga muscular.

La fermentación láctica es causada por algunos hongos y bacterias. El ácido láctico más importante que producen las bacterias es el lactobacillus. Otras bacterias que produce el ácido láctico son: Leuconostoc mesenteroides, Pediococcus cerevisiae, Estreptococo lactis y Bifidobacterium bifidus.

La fermentación láctica es usada en todo el mundo para producir variedad de comidas:
  • Mundo Occidental: yogur, panes de pan fermentado, chucrut, encurtidos de pepino y aceitunas.
  • Medio Oriente: verduras en ecabeche
  • Corea: kimchi (mezcla fermentada de col china, rábanos, rojo Pimienta, ajo y jengibre)
  • Rusia: kéfir
  • Egipto: rayab de laban y zeer de laban (leche fermentada), kishk (mezcla de leche fermentada y cereal)
  • Nigeria: gari (mandioca ó yuca fermentada)
  • Sudáfrica: magou (avena de maíz fermentada)
  • Tailandia: nham (cerdo fresco fermentado)
  • Filipinas: balao de balao (mezcla de langostino y arroz fermentado)

La presencia del ácido láctico, producido durante la fermentación láctica es responsable del sabor amargo, y de mejorar la estabilidad y seguridad microbiológica del alimento. Este ácido láctico fermentado es responsable del sabor amargo de productos lácteos como el queso, yogurt y el kefir. El ácido láctico fermentado también da el sabor amargo para fermentar vegetales, tales como los tradicionales pikles, y sauerkraut. El azúcar en las coles son convertidas en ácido láctico y usado como preservante.

Molècula de àcido làctico

Esquema bioquímico del proceso de fermentación
A)     Alcohólica : 2 ácido pirúvico + 2 NADH Þ 2 etanol + 2 CO2 + 2 NAD+
B)      Láctica : 2 ácido pirúvico + 2 NADH Þ 2 ácido láctico + 2 NAD+


Respiraciòn Celular
El proceso por el cual las células degradan las moléculas de alimento para obtener energía recibe el nombre de RESPIRACIÓN CELULAR.
La respiración celular es una reacción exergónica, donde parte de la energía contenida en las moléculas de alimento es utilizada por la célula para sintetizar ATP. Decimos parte de la energía porque no toda es utilizada, sino que una parte se pierde.
Aproximadamente el 40% de la energía libre emitida por la oxidación de la glucosa se conserva en forma de ATP. Cerca del 75% de la energía de la nafta se pierde como calor de un auto; solo el 25% se convierte en formas útiles de energía. La célula es mucho más eficiente.
La respiración celular es una combustión biológica y puede compararse con la combustión de carbón, bencina, leña. En ambos casos moléculas ricas en energía son degradadas a moléculas más sencillas con la consiguiente liberación de energía.
Tanto la respiración como la combustión son reacciones exergónicas.
Sin embargo existen importantes diferencias entre ambos procesos. En primer lugar la combustión es un fenómeno incontrolado en el que todos los enlaces químicos se rompen al mismo tiempo y liberan la energía en forma súbita; por el contrarío la respiración es la degradación del alimento con la liberación paulatina de energía. Este control está ejercido por enzimas específicas.
En segundo lugar la combustión produce calor y algo de luz. Este proceso transforma energía química en calórica y luminosa. En cambio la energía liberada durante la respiración es utilizada fundamentalmente para la formación de nuevos enlaces químicos (ATP).
La respiración celular puede ser considerada como una serie de reacciones de óxido-reducción en las cuales las moléculas combustibles son paulatinamente oxidadas y degradadas liberando energía. Los protones perdidos por el alimento son captados por coenzímas.
La respiración ocurre en distintas estructuras celulares. La primera de ellas es la glucólisis que ocurre en el citoplasma. La segunda etapa dependerá de la presencia o ausencia de O2 en el medio, determinando en el primer caso la respiración aeróbica (ocurre en las mitocondrias), y en el segundo caso la respiración anaeróbica o fermentación (ocurre en el citoplasma).

GLUCÓLISIS
La glucólisis, lisis o escisión de la glucosa, tiene lugar en una serie de nueve reacciones, cada una catalizada por una enzima específica, hasta formar dos moléculas de ácido pirúvico, con la producción concomitante de ATP. La ganancia neta es de dos moléculas de ATP, y dos de NADH por cada molécula de glucosa.
Las reacciones de la glucólisis se realizan en el citoplasma, como ya adelantáramos y pueden darse en condiciones anaerobias; es decir en ausencia de oxígeno.
Los primeros cuatro pasos de la glucólisis sirven para fosforilar (incorporar fosfatos) a la glucosa y convertirla en dos moléculas del compuesto de 3 carbonos gliceraldehído fosfato (PGAL). En estas reacciones se invierten dos moléculas de ATP a fin de activar la molécula de glucosa y prepararla para su ruptura.

Ecuación de la Glucólisis
Glucosa + 2 ADP + 2 Pi + 2 NAD+ 2 piruvato + 2 ATP + 2 NADH + 2 H+ + 2 H2O

Video respiracion celular y glucolisis:   http://www.youtube.com/watch?v=YoM4y1PGBrM


Ciclo de Krebs
El ciclo de Krebs (conocido también como ciclo de los ácidos tricarboxílicos o ciclo del ácido cítrico) es un ciclo metabólico de importancia fundamental en todas las células que utilizan oxígeno durante el proceso de respiración celular. En estos organismos aeróbicos, el ciclo de Krebs es el anillo de conjunción de las rutas metabólicas responsables de la degradación y desasimilación de los carbohidratos, las grasas y las proteínas en anhídrido carbónico y agua, con la formación de energía química.

El ciclo de Krebs es una ruta metabólica anfibólica, ya que participa tanto en procesos catabólicos como anabólicos. Este ciclo proporciona muchos precursores para la producción de algunos aminoácidos, como por ejemplo el cetoglutarato y el oxalacetato, así como otras moléculas fundamentales para la célula.

El ciclo toma su nombre en honor del científico anglo-alemán Hans Adolf Krebs, que propuso en 1937 los elementos clave de la ruta metabólica. Por este descubrimiento recibió en 1953 el Premio Nobel de Medicina.
http://www.ciclodekrebs.com/

El ciclo de Krebs, que tiene lugar dentro de las mitocondrias, completa la ruptura de la glucosa al descomponer un derivado del ácido pirúvico hasta dióxido de carbono. Como lo sugieren los símbolos más pequeños para el ATP en el diagrama, la célula produce una pequeña cantidad de ATP (por medio de fosforilación a nivel de sustrato) durante la glucólisis y el ciclo de Krebs.




En nuestro campo del ejercicio, cuando se activa la glucólisis anaeróbica y la intensidad lo permite (requerimiento energético) el piruvato producido por la vía anaeróbica es sintetizado en energía con la ayuda del oxigeno en el ciclo de Krebs.
Acetil-S-CoA + 3H20 ------ 2C02 + 8H + HS-CoA

Durante el ejercicio aeróbico se produce ácido láctico pero este es inhibido por el oxigeno al desviar la mayoría de su precursor (el ácido pirúvico) al ciclo de Krebs (en su forma de acetil-CoA) Cuando los requerimientos energéticos no lo permiten el ciclo de Krebs que tiene una capacidad limitada no puede resintetizar el exceso de ácido láctico producido por la glucólisis anaeróbica y este empieza a acumularse en el organismo, apareciendo la fatiga muscular.
Por lo que el ciclo de krebs cumple con la funcion de posibilitar la continuidad del metabolismo del piruvato producido desde la glucosa, así como de productos intermediarios de lipidos y proteinas, mediante la fomracion del conocido acetil-CoA.
El ciclo de krebs es una escalera de subprocesos químicos de 8 reacciones en total. Es un proceso cíclico. Cada subproceso necesita de una enzima (sustancias de naturaleza proteica que catalizan reacciones químicas) diferente.



Enlaces:

http://www.ciclodekrebs.com/
http://www.todonatacion.com/ciclo-de-krebs/